A position-based Explicit force control Strategy based on Online trajectory Prediction

نویسندگان

  • Xianjun Sheng
  • Lei Xu
  • Zhou Wang
چکیده

In the mirror milling process of large thin-walled parts, maintaining a constant supporting force is crucial for improving the workpiece local stiffness to suppress vibration. Aiming at the flexible characteristics of large thin-walled parts, this work presents a position-based force explicit control strategy based on online trajectory prediction. An online trajectory pre-modification force controller is proposed, it contains a position pre-modification module and a typical feedback controller for coarse adjustment and precise adjustment. The position pre-modification value is obtained by online trajectory prediction, and the prediction method relies on an online force and normal direction measurement system. The position premodification module can reduce the interference of the flexible characteristics on the force control. Numerical simulation and experiment are carried out, the control results show: the performance of dynamic force tracking method proposed is improved compared with the traditional position-based explicit control strategy with a typical feedback controller.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification and Adaptive Position and Speed Control of Permanent Magnet DC Motor with Dead Zone Characteristics Based on Support Vector Machines

In this paper a new type of neural networks known as Least Squares Support Vector Machines which gained a huge fame during the recent years for identification of nonlinear systems has been used to identify DC motor with nonlinear dead zone characteristics. The identified system after linearization in each time span, in an online manner provide the model data for Model Predictive Controller of p...

متن کامل

Online Learning for Ground Trajectory Prediction

This paper presents a model based on an hybrid system to numerically simulate the climbing phase of an aircraft. This model is then used within a trajectory prediction tool. Finally, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) optimization algorithm is used to tune five selected parameters, and thus improve the accuracy of the model. Incorporated within a trajectory prediction ...

متن کامل

Drilling Trajectory Prediction Model for Push-the-bit Rotary Steerable Bottom Hole Assembly

The study of rotary steering drilling technology is currently one of the hot topics in the drilling engineering field. It requires accurate well trajectory control instructions when rotary steerable tools are applied to achieve the well trajectory control goal. A drilling trajectory prediction model will benefit this progress. According to the continuous beam theory, a mechanical model of push-...

متن کامل

Chaotic Genetic Algorithm based on Explicit Memory with a new Strategy for Updating and Retrieval of Memory in Dynamic Environments

Many of the problems considered in optimization and learning assume that solutions exist in a dynamic. Hence, algorithms are required that dynamically adapt with the problem’s conditions and search new conditions. Mostly, utilization of information from the past allows to quickly adapting changes after. This is the idea underlining the use of memory in this field, what involves key design issue...

متن کامل

FAT based Adaptive Impedance Control for Unknown Environment Position

This paper presents the Function Approximation Technique (FAT) based adaptive impedance control for a robotic finger. The force based impedance control is developed so that the robotic finger tracks the desired force while following the reference position trajectory, under unknown environment position and uncertainties in finger parameters. The control strategy is divided into two phases, which...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Robotics and Automation

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2017